Реактор -- это катушка с постоянным индуктивным сопротивлением, включенная в цепь последовательно.В большинстве конструкций токоограничивающие реакторы не имеют ферромагнитных сердечников. В нормальном режиме на реакторе наблюдается падение напряжения порядка 3--4 %, что вполне допустимо. В случае короткого замыкания бомльшая часть напряжения приходится на реактор. Значение максимального ударного тока короткого замыкания рассчитывается по формуле:

где I H -- номинальный ток сети, Xp -- реактивное сопротивление реактора.

Соответственно, чем выше будет реактивное сопротивление, тем меньше будет значение максимального ударного тока в сети.

Реактивность прямо пропорциональна индуктивному сопротивлению катушки. При больших токах у катушек со стальными сердечниками происходит насыщение сердечника, что резко снижает реактивность, и, как следствие, реактор теряет свои токоограничивающие свойства. По этой причине реакторы выполняют без стальных сердечников, несмотря на то, что при этом, для поддержания такого же значения индуктивности, их приходится делать больших размеров и массы. В случае если в линии электропередач 0.4-110 кВ имеются устройства передачи данных по технологии PLC, то реактор будет гасить эти частоты.

Виды реакторов

Токоограничивающие реакторы подразделяются:

  • · по месту установки: наружного применения и внутреннего;
  • · по напряжению: среднего (3?--35 кВ) и высокого (110?--500 кВ);
  • · по конструктивному исполнению: на бетонные, сухие, масляные и броневые;
  • · по расположению фаз: вертикальное, горизонтальное и ступенчатое;
  • · по исполнению обмоток: одинарные и сдвоенные;
  • · по функциональному назначению: фидерные, фидерные групповые и межсекционные.

Бетонные реакторы

Получили распространение на внутренней установке на напряжения сетей до 35 кВ включительно. Бетонный реактор представляет собой концентрически расположенные витки изолированного многожильного провода, залитого в радиально расположенные бетонные колонки. При коротких замыканиях обмотки и детали испытывают значительные механические напряжения, обусловленные электродинамическими усилиями, поэтому при их изготовлении используется бетон с высокой прочностью. Все металлические детали реактора изготавливаются из немагнитных материалов. В случае больших токов применяют искусственное охлаждение.

Фазные катушки реактора располагают так, что при собранном реакторе поля катушек расположены встречно, что необходимо для преодоления продольных динамических усилий при коротком замыкании. Бетонные реакторы могут выполняться как естественно-воздушного так и воздушно-принудительного охлаждения (для больших номинальных мощностей), т.н. "дутьё" (добавляется буква "Д" в маркировке).

Сейчас (2014 г.) бетонные реакторы считаются морально устаревшими и вытесняются сухими реакторами.

Масляные реакторы

Применяются в сетях с напряжением выше 35 кВ. Масляный реактор состоит из обмоток медных проводников, изолированных кабельной бумагой, которые укладываются на изоляционные цилиндры и заливаются маслом или иным электротехническим диэлектриком. Жидкость служит одновременно и изолирующей и охлаждающей средой. Для снижения нагрева стенок бака от переменного поля катушек реактора применяют электромагнитные экраны и магнитные шунты.

Электромагнитный экран представляет собой расположенные концентрично относительно обмотки реактора короткозамкнутые медные или алюминиевые витки вокруг стенок бака. Экранирование происходит за счет того, что в этих витках индуцируется электромагнитное поле, направленное встречно и компенсирующее основное поле.

Магнитный шунт -- это пакеты листовой стали, расположенные внутри бака около стенок, которые создают искусственный магнитопровод с магнитным сопротивлением, меньшее, чем у стенок бака, что заставляет основной магнитный поток реактора замыкаться по нему, а не через стенки бака.

Для предотвращения взрывов, связанных с перегревом масла в баке, согласно ПУЭ, все реакторы на напряжение 500 кВ и выше должны быть оборудованы газовой защитой.

Сухие реакторы

Сухие реакторы относятся к новому направлению в конструировании токоограничивающих реакторов и применяются в сетях с номинальным напряжением до 220 кВ. В одном из вариантов конструкции сухого реактора обмотки выполняются в виде кабелей (обычно прямоугольного сечения для уменьшения габаритов, повышения механической прочности и срок службы) с кремнеорганической изоляцией, намотанных на диэлектрический каркас. Преимуществом применения кремнеорганической изоляции является большая термостойкость, устойчивость к электродинамическим нагрузкам, эластичность, герметичность, неизменность диэлектрических и механических свойств при длительном времени эксплуатации, что в свою очередь уменьшает потери энергии на вихревые токи и нагрев, и позволяет снизить добавочные потери на вихревые токи от 20 до 40%. В другой конструкции реакторов провод обмотки изолируется полиамидной плёнкой, а затем двумя слоями стеклянных нитей с проклейкой и пропиткой их кремнеорганичексим лаком и последующим запеканием, что соответствует классу нагревостойкости Н (рабочая температура до 180 °С); прессовка и стяжка бандажами обмоток делает их устойчивыми к механическим наряжениям при ударном токе.

Броневые реакторы

Несмотря на тенденцию изготавливать токоограничивающие реакторы без ферромагнитного магнитопровода (вследствие опасности насыщения магнитной системы при токе к.з.и как следствие-резким падением токоогрничивающих свойств) некоторые электротехнические предприятия России (ООО "КПМ", г.Санкт-Петербург; СВЭЛ, г.Екатеринбург) выпускают реакторы с сердечниками броневой конструкции из электротехнической стали. Преимуществом данного типа токоограничивающих реакторов является меньшие массо-габаритные показатели и стоимость (за счёт уменьшения в конструкции доли цветных металлов). Недостаток: возможность потери токоограничивающих свойств при ударных токах, больших номинального для данного реактора, что в свою очередь требует тщательного расчёта токов к.з. в сети и выбора броневого реактора таким образом, чтобы в любом режиме сети ударный ток к.з. не превышал номинального.

Сдвоенные реакторы

Сдвоенные реакторы применяются для уменьшения падения напряжения в нормальном режиме, для чего каждая фаза состоит из двух обмоток с сильной магнитной связью, включаемых встречно, к каждой из которых подключается примерно одинаковая нагрузка, в результате чего индуктивность уменьшается (зависит от остаточного разностного магнитного поля). При к.з. в цепи одной из обмоток поле резко возрастает, индуктивность увеличивается и происходит процесс токоограничения.

Межсекционные и фидерные реакторы

Межсекционные реакторы включаются между секциями для ограничения токов и поддержания напряжения в одной из секций, при к.з. в другой секции. Фидерные и фидерные групповые устанавливаются на отходящих фидерах (групповые являются общими для несколько фидеров).

Немного теории

Автоматические выключатели, осуществляя отключение цепей при коротких замыканиях, не защищают эти цепи от разрушающего действия электродинамических сил. В современных мощных сетях токи короткого замыкания, а следовательно, и электродинамические силы бывают настолько велики, что часто не представляется возможным выполнить установки с требуемой электродинамической и термической стойкостью. С целью ограничения ударного тока короткого замыкания (КЗ) в мощных сетях применяются Токоограничивающие реакторы, которые устанавливаются на отходящих фидерах (1 и 2) (рис. 3-1) и между секциями сборных шин (3). Кроме ограничения тока КЗ реакторы одновременно во время короткого замыкания поддерживают напряжение на питающих шинах на некотором определенном уровне.

Реактор представляет собой катушку с постоянным индуктивным сопротивлением х = щL. Одним из основных параметров является его индуктивное сопротивление Хр, равное отношению падения напряжения на реакторе Uр при протекании по нему номинального тока к фазному напряжению Uф. Индуктивное сопротивление выражается в процентах. Если пренебречь омическим сопротивлением реактора, то

Индуктивное сопротивление фидерных реакторов выбирается обычно 6 -- 8 %, а секционных 8-12%.

Следует отметить, что при номинальном режиме потери напряжения на реакторе?Uф не равны численно падению напряжения Up на нем (рис. 3 -2, а и б) и существенно зависят от величины cosц(?Uф > 0 при cosц =1; ?Uф = Uр при cosц = 0; ?Uф?0,5Uр при cosц = 0,8). Таким образом, при номинальном режиме обеспечивается допустимое (3--4%) отклонение напряжения у потребителей. При коротком замыкании cosц>0 и большая часть напряжения приходится на реактор (рис. 3-2,6), вследствие чего на сборных шинах поддерживается сравнительно высокое остаточное напряжение, значение которого зависит от соотношения сопротивлений сети до реактора и самого реактора. Если пренебречь активным сопротивлением сети и реактора, то кратность установившегося тока короткого замыкания будет

Ударный ток короткого замыкания при расчете реакторов берется равным

Для поддержания постоянства индуктивного сопротивления токоограничивающие реакторы выполняются без стальных сердечников. При этом они получаются больших размеров и массы. Реакторы со стальными сердечниками при равной индуктивности имели бы меньшие размеры. Однако у них при больших токах сердечники насыщаются, индуктивное сопротивление таких реакторов резко снижается и реакторы теряют свои токоограничивающие свойства как раз в тот момент, когда они необходимы. Ввиду этого реакторы со стальными сердечниками не получили распространения.

Индуктивность L реакторов может быть рассчитана по следующим формулам (размеры даны в сантиметрах, L -- в миллигенри):

1) для реактора с соотношением геометрических размеров подобно рис. 3-3, а и числом витков w

где б = 3/4 при 0,3 ? D/?1 и б = 1/2 при 1 ? D/?3;

2) для реактора, у которого h/D >> b/D

где к1 = f(h/D)

3) для реактора, у которого b/D >> h/D

где к2 = f(b/D)

Получили распространение сдвоенные реакторы 4. Такой реактор питает два фидера. Катушки каждой фазы включены так, что создаваемые ими потоки направлены встречно. При номинальном токе индуктивность (следовательно, и потери напряжения) каждой из катушек снижается из-за размагничивающего действия другой. При равных токах и коэффициенте связи, стремящемся к единице, индуктивность реактора стремилась бы к нулю. Обычно коэффициент связи равен 0,4--0,6. Соответственно уменьшаются и потери напряжения. При коротком замыкании на одном из фидеров размагничивающим действием катушки другого фидера, обтекаемой номинальным током, можно пренебречь. Индуктивность и токоограничивающее действие сдвоенного реактора получаются такими же, как у одинарного.

На напряжения до 35 кВ и для внутренней установки почти исключительное распространение получили бетонные реакторы. Бетонный реактор выполняется в виде концентрически расположенных витков 1 из специального круглого изолированного многожильного провода, залитых в радиально расположенные бетонные колонки 2. Благодаря своей эластичности провод демпфирует термические и динамические усилия и тем самым частично снимает напряжения с бетона. Обмотки реактора на большие токи выполняются из нескольких параллельных проводов с транспозицией этих параллелей, обеспечивающей равномерное распределение токов.

Число колонок определяется диаметром намотки. Основная изоляция реактора -- бетон, который проходит специальный технологический режим и выпускается с высокими механическими свойствами. Весь реактор после изготовления подвергается сушке, пропитке и покрытию влагостойкими лаками. Каждая колонка реактора устанавливается на опорные изоляторы 3, которые обеспечивают изоляцию от земли и между фазами. Фазы могут быть расположены вертикально а также горизонтально или ступенчато. Все металлические детали реактора выполняются из немагнитных материалов. При больших токах применяется искусственное охлаждение.

На напряжения свыше 35 кВ и для наружной установки используются масляные реакторы. Обмотки 3 из медных проводников, изолированных кабельной бумагой, укладываются на изоляционные цилиндры 4 и размещаются в баках (баке) 2, заливаемых маслом. Концы обмотки каждой фазы выводятся через проходные изоляторы 1 наружу. Масло служит и как изолирующая, и как охлаждающая среда.

· Переменное поле катушек реактора, замыкающееся через стенки бака, может привести к чрезмерному нагреву этих стенок. Для снижения нагрева стенок (и масла) необходимо ограничить замыкающийся через них магнитный поток. Для этого служат электромагнитные экраны 5 или магнитные шунты. Электромагнитный экран представляет собой медные (алюминиевые) короткозамкнутые витки, расположенные концентрично относительно обмотки реактора у стенок бака. Индуцируемые в витках токи создают в стенках бака поле, направленное встречно основному, и почти полностью его компенсируют. Нагрев стенок снижается. Магнитный шунт представляет собой пакеты листовой стали, укрепленные около стенок бака с внутренней его стороны и создающие искусственный магнитопровод с магнитным сопротивлением, значительно меньшим сопротивления стенок бака. Магнитный поток реактора замыкается по магнитному шунту, а не через стенки. Реакторы применяют для ограничения токов короткого замыкания и поддержания на сборных шинах установки значительного остаточного напряжения. Реактор, представляющий собой катушку с большим индуктивным и малым активным сопротивлением, устанавливают на отходящих кабельных линиях или в цепи понижающих трансформаторов мощных станций и подстанций. При коротком замыкании за реактором ток короткого замыкания значительно меньше, чем в нереактированной сети, поскольку общее индуктивное сопротивление в первом случае больше (за счет сопротивления реакторов). Наибольшее распространение получили бетонные реакторы с воздушным охлаждением, простые по конструкции и надежные в работе. Обмотку / реактора выполняют из гибкого многожильного изолированного провода. Витки обмотки укладывают на специальном каркасе и скрепляют бетонными колонками 2, пропитанными лаком. В трехфазных установках применяют реакторы, состоящие из трех катушек, изолированных друг от друга и от заземленных частей. Реактор характеризуется номинальными током и напряжением, а также индуктивным сопротивлением в процентах, которое соответствует процентному падению напряжения в реакторе при протекании номинального тока.

Бетонные реакторы изготовляют на номинальные напряжения 6 и 10 кВ и токи до 4000 А при индуктивном сопротивлении от 4 до 12%. На рис. 1 показан бетонный реактор РБА-6-400-4, где буквы и цифры означают: Р -- реактор, Б -- бетонный, А -- с алюминиевой обмоткой, 6 -- номинальное напряжение, кВ, 400 -- номинальный ток, А, 4 -- индуктивное сопротивление, %.

При номинальных токах /н 1500 А обычно применяют вертикальную установку фаз (катушек) реактора, при токах /н > 1500 А -- горизонтальную установку. Направление намотки витков средней фазы должно быть противоположным направлению витков верхней и нижней фаз (при вертикальной установке) и крайних фаз (при горизонтальной установке). Это необходимо для того, чтобы при протекании тока короткого замыкания катушки притягивались, а не отталкивались, как было бы при одинаковом направлении намотки витков всех катушек. При такой конструкции легче выполнить их надежное крепление.

В последние годы широко применяют сдвоенные реакторы, аналогичные по конструкции рассмотренным ранее, но отличающиеся от них выводом от середины обмотки, который подсоединяют к источнику питания, а к двум другим выводам присоединяют защищаемое оборудование. При использовании сдвоенных реакторов уменьшается их общее необходимое количество.

Реакторы с естественным или принудительным воздушным охлаждением предназначены для ограничения токов короткого замыкания в электрических сетях и сохранения определенного уровня напряжения в электроустановках в случае короткого замыкания в энергосистемах с частотой 50 и 60 Гц в условиях умеренно-холодного климата и в условиях сухого и влажного тропического климата для внутренней и наружной установки.

Реакторы применяются в схемах электрических станций и подстанций с электрическими параметрами в соответствии с паспортными данными.

Применение реакторов дает возможность ограничить номинальный ток отключения линейных выключателей и обеспечить термическую стойкость отходящих кабелей. Благодаря реактору все неповрежденные линии находятся под напряжением, близким к номинальному (реактор поддерживает напряжение на сборных шинах), что повышает надежность работы электроустановок и облегчает условия работы электрооборудования.

Реакторы предназначены для работы на открытом воздухе (климатическое исполнение УХЛ, Т категория размещения 1 по ГОСТ 15150-69) и в закрытых помещениях с естественной вентиляцией (климатическое исполнение УХЛ, Т категория размещения 2, 3 по ГОСТ 15150-69).

Условия эксплуатации:

  • высота установки над уровнем моря, м 1000;
  • тип атмосферы в месте установки тип I или тип II по ГОСТ15150-69 и ГОСТ 15543-70;
  • рабочее значение температуры окружающего воздуха, °С от минус 50 до плюс 45;
  • относительная влажность воздуха при температуре плюс 27 °С, % 80;
  • сейсмостойкость по шкале МSК-64 ГОСТ 17516-90, балл 8 - для вертикальной и ступенчатой (угловой) установки; 9 - для горизонтальной установки.

СХЕМЫ ВКЛЮЧЕНИЯ И РАСПОЛОЖЕНИЕ ФАЗ РЕАКТОРА

По схеме присоединения к сети реакторы разделяются на одинарные и сдвоенные. Одинарные реакторы на номинальные токи выше 1600 А могут иметь секционную обмотку катушки из двух параллельно соединенных секций. Принципиальные схемы включения фазы показаны на рисунке 1.

Рисунок 1 - Принципиальные схемы включения фазы

В зависимости от места установки и особенностей распределительных устройств трехфазный комплект реактора может иметь вертикальное, ступенчатое (угловое) и горизонтальное расположение фаз, показанное на рисунках 2, 3, 4.

Рисунок 2 - Вертикальное (угловое) расположение

Рисунок 3 - Ступенчатое расположение

Рисунок 4 - Горизонтальное расположение

Крупногабаритные реакторы, реакторы наружной установки (категория размещения 1) и реакторы на класс напряжения 20 кВ изготавливаются только с горизонтальным расположением фаз. Фазы реактора, изготовленные для вертикальной установки, могут использоваться как для ступенчатой (угловой) так и для горизонтальной установки. Фазы реактора, изготовленные для ступенчатой (угловой) установки, могут использоваться и для горизонтальной установки. Фазы реактора, изготовленные для горизонтальной установки, не могут быть использованы ни для вертикальной, ни для ступенчатой (угловой) установки.

Реакторы выполнены в пофазном исполнении.

Каждая фаза реактора (см. рисунок 5, 6) представляет собой катушку индуктивности с линейным индуктивным сопротивлением без стального магнитопровода. Обмотка катушки выполнена по кабельной схеме намотки в виде концентрических витков, поддерживаемых радиально-расположенными опорными колонками (бетонными или сборной конструкции). Колонки устанавливаются на опорные изоляторы, которые обеспечивают необходимый изоляционный уровень для соответствующего класса напряжения. Обмотка катушки выполняется в один или несколько параллельных проводов в зависимости от величины номинального тока. Обмотка катушки фазы выполнена из специального изолированного реакторного провода с алюминиевыми токопроводящими жилами. Катушки фаз исполнения «С» при вертикальной и исполнения «СГ» при ступенчатой (угловой) установке имеют направление намотки обмотки обратное катушкам фаз исполнений «В», «Н», что обеспечивает выгодное распределение усилий, возникающих в обмотках во время короткого замыкания. Выводы обмотки выполнены в виде алюминиевых пластин, причем каждый выводной провод обмотки имеет собственную контактную пластину. Такая конструкция позволяет сделать монтаж и ошиновку реактора легко и просто.

У одинарных реакторов с секционной обмоткой катушка состоит из двух параллельно соединяемых секций обмоток, намотанных в противоположных направлениях.

У сдвоенных реакторов обмотка катушки состоит из двух ветвей обмоток с высокой взаимоиндуктивностью и одинаковым направлением намотки обмоток ветвей.

Угол (Ψ) между выводами обмотки фазы показан на рисунках 7, 8, 9 и обычно составляет 0º; 90º; 180º; 270º . Отсчет углов ведется против хода часовой стрелки и определяется:

  • для одинарных реакторов:
    • от нижнего вывода к верхнему выводу - для простой обмотки;
    • от нижнего и верхнего выводов к среднему - для секционной обмотки;
  • для сдвоенных реакторов - от нижнего вывода к среднему выводу и от среднего вывода к верхнему выводу.

Рисунок 7 - Углы между выводами обмотки фазы одинарного реактора

Рисунок 8 - Углы между выводами обмотки фазы одинарного реактора с секционной обмоткой

Рисунок 9 - Углы между выводами обмотки фазы сдвоенного реактора

Маркировка вывода наносится на верхней стороне каждой контактной пластины.

Принцип действия реакторов основан на повышении реактивного сопротивления обмотки в момент короткого замыкания, что обеспечивает уменьшение (ограничение) токов КЗ и позволяет поддерживать в момент КЗ уровень напряжения неповрежденных присоединений.

Одинарные реакторы позволяют осуществлять одно- или двухступенчатую схему реактирования. В зависимости от места установки в той или иной схеме соединений одинарные реакторы применяются в качестве линейных (индивидуальных), групповых и межсекционных.

Принципиальные схемы применения одинарных реакторов показаны на рисунке 10.

Рисунок 10 - Принципиальные схемы применения одинарных реакторов

Линейные реакторы L1 ограничивают мощность короткого замыкания на отходящей линии, в сети и на подстанциях, питающихся на данной линии. Линейные реакторы рекомендуется устанавливать после выключателя. При этом разрывная мощность линейного выключателя выбирается с учетом ограничения мощности короткого замыкания реактором, так как авария на участке «выключатель - реактор» маловероятна.

Групповые реакторы L2 применяются в тех случаях, когда маломощные присоединения можно объединить таким образом, чтобы реактор, ограничивающий всю группу присоединений, не приводил к недопустимому снижению напряжения в нормальном режиме. Групповые реакторы позволяют сэкономить объем распределительных устройств (РУ) по сравнению с вариантом применения линейных реакторов.

Межсекционные реакторы L3 применяются в РУ мощных станций и подстанций. Разделяя отдельные участки, они ограничивают мощность короткого замыкания в пределах самой станции и РУ. Использование межсекционных реакторов связано со значительной степенью ограничения мощности короткого замыкания и поэтому, во избежание больших падений напряжений при номинальном режиме, следует стремиться к максимальному значению коэффициента мощности «cos», проходящей по реактору нагрузки. Межсекционные реакторы не заменяют линейные и групповые реакторы, поскольку при отсутствии последних токи КЗ от части генераторов не ограничиваются.

Сдвоенные реакторы позволяют осуществлять полное одноступенчатое ограничение токов КЗ путем непосредственного реактирования основных генерирующих цепей (генератора, трансформатора) и обеспечивают: упрощение схемы соединений и конструкции РУ; улучшение коэффициента мощности; улучшение режима напряжений при примерно равно нагруженных ветвях. Генерирующая мощность подключается к средним контактным выводам. Допускается любое соотношение нагрузки ветвей в пределах длительно допустимого действующего тока нагрузки. Реактивное сопротивление ветви реактора зависит от режима работы. В рабочем режиме (встречное включение) ограничивающие свойства, потери мощности и реактивная мощность являются минимальными.

В режиме короткого замыкания реактивность ветви реактора, через которую питается поврежденное присоединение, проявляется полностью, так как влияние относительно малого рабочего тока ветви неповрежденного присоединения незначительно. При наличии генерирующих мощностей со стороны ветви реактора, через которое питается поврежденное присоединение, ток в обеих ветвях сдвоенного реактора проходит последовательно (согласное включение), и за счет дополнительной реактивности, обусловленной взаимной индуктивностью ветвей, токоограничивающие свойства реактора проявляются в полной мере.

Сдвоенные реакторы применяются в качестве групповых и секционных (см. рисунок 11)

Рисунок 11 - Принципиальные схемы применения сдвоенных реакторов

Реакторы должны использоваться по своему назначению и эксплуатироваться в условиях, соответствующих их климатическому исполнению и категории размещения.

В случае применения токоограничивающих реакторов для других целей, не по их прямому назначению, следует учитывать возможность влияния режима эксплуатации (перегрузки, перенапряжения, систематичность воздействия ударных токов) на показатели и надежность реакторов.

Режимы нагрузки и охлаждения реакторов должны соответствовать их паспортным данным.

Толчки нагрузки, воздействующие разнонаправлено на ветви сдвоенного реактора, от самозапуска электрических машин, находящихся за реактором, не должны превышать пятикратного значения номинального тока и быть продолжительностью более 15 секунд. Подвергать реактор воздействию таких толчков нагрузки, более чем 15 раз в год, не рекомендуется.

При применении сдвоенных реакторов в схемах, где разнонаправленные в ветвях реактора токи самозапуска электрических машин могут превышать 2,5-кратный номинальный ток реактора, включение ветвей должно производиться поочередно с выдержкой по времени не менее 0,3 секунды.

Реакторы внутренней установки следует устанавливать в сухих и вентилируемых помещениях, где разность температур отходящего и приточного воздуха не превышает 20 ºС.

Для реакторов, требующих при номинальных нагрузках устройства принудительного воздушного охлаждения, должен быть обеспечен обдув обмотки фаз воздухом из расчета расхода воздуха 3 - 5 м3/мин на каждый кВт потерь*. Охлаждающий воздух наиболее рационально подавать снизу через отверстие в центре фундамента**.

Реакторы наружной установки следует устанавливать на специально отведенных и оборудованных ограждениями, соответственно действующих правил, площадках.

Для защиты обмотки фаз от прямого попадания атмосферных осадков и солнечных лучей может быть установлен общий навес или защитная крыша, устанавливаемая отдельно на каждой фазе.

Реакторы должны устанавливаться на фундаменты, высота которых указана в паспорте реактора.

В местах установки не допускается наличие короткозамкнутых контуров, деталей из ферромагнитных материалов в стенах помещений, отведенных для установки реакторов, в конструкциях фундаментов и ограждений. Наличие магнитных материалов увеличивает потери, возможен чрезмерный нагрев смежных металлических частей, а при коротком замыкании - опасные усилия на конструктивные элементы из ферромагнитных материалов. Наиболее опасными с точки зрения недопустимых перегревов являются торцовые металлоконструкции - пол, потолок.

При наличии магнитных материалов необходимо выдерживать, указанные в паспорте реактора, монтажные расстояния X, Y, Y1, h, h1 от реактора до строительных конструкций и ограждений.

При отсутствии магнитных материалов и замкнутых токопроводящих контуров в строительных конструкциях и ограждениях монтажные расстояния можно снизить до величин изоляционных расстояний согласно правил устройства электроустановок (ПУЭ).

При горизонтальной и ступенчатой (угловой) установке фаз реакторов необходимо строго выдерживать, указанные в паспорте, минимальные расстояния S и S1 между осями фаз, определяемые допустимыми горизонтально действующими усилиями при гарантированной электродинамической стойкости.

Эти расстояния могут быть снижены, если в схеме установки реактора наибольшее возможное значение ударного тока меньше, чем значение тока электродинамической стойкости, указанное в паспорте реактора .

* Количество охлаждающего воздуха - по паспорту реактора.
** Конструктивное решение подачи охлаждающего воздуха определяется и выполняется потребителем самостоятельно.

Для всех фаз реакторов вертикальной установки и фаз «В» и «СГ» реакторов ступенчатой (угловой) установки контактные пластины одноименных выводов (нижних, средних, верхних) при монтаже должны находиться на одной вертикали один над другим.

Для выбора наиболее благоприятного расположения выводов с точки зрения подключения к ошиновке, допускается поворачивать каждую фазу относительно другой вокруг вертикальной оси на угол равный 360º/N, где N - количество колонок фазы.

Для одинарных реакторов - за подводящие выводы принимать или все нижние «Л2» или все верхние «Л1» выводы (см. рисунок 7).

Для одинарных реакторов с секционной обмоткой - за подводящие выводы принимать или нижние и верхние «Л2» или средние «Л1» выводы (см. рисунок 8).

Для сдвоенных реакторов - генерирующая мощность должна подключаться к средним выводам «Л1-М1» тогда нижние выводы «М1» составят одно , а верхние выводы «Л2» составят другое трехфазное присоединения (см. рисунок 9).

Для предохранения выводов реактора от электродинамических усилий короткого замыкания подвод шин к реактору необходимо осуществлять в радиальном направлении с закреплением их на расстоянии не более 400-500 мм.

Перед началом монтажа необходимо проверить сопротивление изоляции обмоток фаз относительно всех крепежных элементов. Сопротивление изоляции измеряют мегомметром, имеющим напряжение 2500 В (допускается применение мегомметров на 1000 В). Величина сопротивления изоляции должна быть не менее 0,5 МОм при температуре плюс (10-30) °С.

Техническое обслуживание реакторов состоит из внешнего осмотра (через каждые три месяца эксплуатации), очистки изоляторов и обмоток от пыли сжатым воздухом и проверки заземления.

Упаковка фаз реактора обеспечивает их сохранность при транспортировании и хранении.

Транспортная тара - сборно-щитовой ящик по ГОСТ 10198-91 собранный из отдельных щитов (днище, боковые и торцовые щиты, крышка), скрепленных между собой гвоздями.

Каждая фаза упакована в отдельном ящике совместно с комплектующими и крепежными изделиями, необходимыми для монтажа и подключения.

Фаза установлена на днище на деревянных подкладках и крепится к днищу с помощью деревянных брусков, расположенных между опорными колонками. Бруски прибиваются к днищу гвоздями и предохраняют фазу от перемещения в ящике в горизонтальной плоскости.

Фазы, отправляемые в отдаленные районы, транспортируемые водными путями, дополнительно крепятся растяжками, которые предохраняют фазу от перемещения в ящике в вертикальной плоскости.

Крепежные изделия упакованы в пластиковые пакеты и размещены внутри обмотки фазы.

Документация (паспорт, РЭ) упакована в полиэтиленовый пакет и уложена между витками обмотки фазы.

В общем случае в состав трехфазного комплекта реактора входит:

  • фаза;
  • вставка*;
  • опора*;
  • фланец;
  • переходник *;
  • изолятор;
  • крепежные изделия;
  • комплект защиты для эксплуатации на открытом воздухе **.

____________________

* Для реакторов серии РТ.
** Для реакторов наружной установки (серии РБ, РТ) по желанию потребителя.

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ

Реакторы серии РБ

  1. Условное обозначение реактора токоограничивающего бетонного с вертикальным расположением фаз, с естественным воздушным охлаждением, класса напряжения 10 кВ, с номинальным током 1000 А, с номинальным индуктивным сопротивлением 0,45 Ом, климатического исполнения УХЛ, категории размещения 1
    РБ 10 - 1000 - 0,45 УХЛ 1 ГОСТ 14794-79.
  2. То же, с горизонтальным расположением фаз, с принудительно-воздушным охлаждением, класса напряжения 10 кВ, с номинальным током 2500 А, с номинальным индуктивным сопротивлением 0,35 Ом, климатического исполнения УХЛ, категории размещения 3
    РБДГ 10 - 2500 - 0,35 УХЛ 3 ГОСТ 14794-79.

Реакторы серии РТ

  1. Условное обозначение трехфазного комплекта реактора токоограничивающего сборного одинарного с вертикальным расположением фаз, класса напряжения 10 кВ, с номинальным током 2500 А, с номинальным индуктивным сопротивлением 0,14 Ом, с обмоткой из реакторного провода с алюминиевыми жилами, с принудительным воздушным охлаждением, климатического исполнения УХЛ, категории размещения 3
    РТВ 10-2500-0,14 АД УХЛ 3 ТУ 3411-020-14423945-2009.
  2. То же, с горизонтальным расположением фаз, класса напряжения 20 кВ, с номинальным током 2500 А, с номинальным индуктивным сопротивлением 0,25 Ом, с обмоткой из реакторного провода с алюминиевыми (или медными) жилами, с естественным воздушным охлаждением, кли- матического исполнения ТС, категории размещения 1
    РТГ 20-2500-0,25 ТС 1 ТУ 3411-020-14423945-2009.

ТЕХНИЧЕСКИЕ ДАННЫЕ

Основные данные и технические параметры приведены в таблице 1

Таблица 1 - Технические параметры

Наименование параметра Значение параметра Примечание
Класс напряжения, кВ 6, 10, 15, 20
Наибольшее рабочее напряжение, кВ 7,2; 12; 17,5; 24 В соответствии с клас-сом напряжения
Частота, Гц 50
Тип исполнения Одинарные; сдвоенные Способ присоединенияк сети
Номинальные токи, А 400; 630; 1000; 1600; 2500; 4000
Номинальное индуктивное сопротивление, Ом 1) 0,14; 0,18; 0,20; 0,22; 0,25; 0,28; 0,35; 0,40; 0,45; 0,56
Сочетание номинальных токов и индуктивных сопротивлений:- одинарные на 6 и 10 кВ- одинарные на 15 и 20 кВ- сдвоенные на 6 и 10 кВ 400-0,35; 400-0,45; 630-0,25;630-0,40; 630-0,56; 1000-0,14; 1000-0,22; 1000-0,28; 1000-0,35; 1000-0,45; 1000-0,56; 1600-0,14; 1600-0,20; 1600-0,25; 1600-0,35; 2500-0,14; 2500-0,20; 2500-0,25; 2500-0,35; 4000-0,10; 4000-0,181000-0,45; 1000-0,56; 1600-0,25; 1600-0,35; 2500-0,14; 2500-0,20; 2500-0,25; 2500-0,352×630-0,25; 2×630-0,40;2×630-0,56; 2×1000-0,14;2×1000-0,22; 2×1000-0,28;2×1000-0,35; 2×1000-0,45;2×1000-0,56; 2×1600-0,14;2×1600-0,20; 2×1600-0,25;2×1600-0,35; 2×2500-0,14;2×2500-0,20 Тип реакторасерия РБсерия РТсерия РТсерия РБ
Расположение фаз Вертикальное;ступенчатое (угловое);горизонтальное
Допуск на номинальное значение,%:- индуктивное сопротивление- потери мощности- коэффициент связи от 0 до +15+15+10
Класс нагревостойкости изоляции А; Е; Н* * для медного провода

План лекции:

4.1 Виды химических реакторов. Реакторы идеального смешения и идеального вытеснения.

4.2 Реакторы для гомогенных процессов

4.3. Реакторы для гетерогенных процессов с твердой фазой

4.4. Реакторы для газо-жидкостных процессов

По первому признаку реакторы делят на периодические, непрерывные и полунепрерывные. Реакторы непрерывные, т.е. с непрерывной подачей реагентов и отводом продуктов, в свою очередь, подразделяются по характеру движения реакционной среды (т.е. по гидродинамической обстановке в реакторе) на реакторы идеального вытеснения и реакторы идеального смешения.

Реакторы периодические характеризуются единовременной загрузкой реагентов. При этом процесс складывается из трех стадий: загрузки сырья, его обработки (химическое превращение) и выгрузки готового продукта. После завершения последовательности этих стадий они повторяются вновь, т.е. работа реактора осуществляется циклически. Продолжительность одного цикла, проводимого в периодическом реакторе, определяется по уравнению

τ п = τ + τ всп, (4.1)

где τ п - полное время цикла; τ - рабочее время (затрачиваемое на проведение химической реакции); τ всп - вспомогательное время (загрузка реагентов и выгрузка продукта).

Реактор идеального смешения периодический представляет собой аппарат с мешалкой, в который периодически загружают исходные реагенты (рис. 4.1). В таком реакторе создается весьма интенсивное перемешивание, поэтому в любой момент времени концентрация реагентов одинакова во всем объеме реактора и изменяется лишь во времени, по мере протекания химической реакции. Такое перемешивание можно считать идеальным.

Рис. 4.1 Реактор идеального смешения периодический

Изменение концентрации исходного реагента А во времени и в объеме реактора показано на рис. 10. Обозначения, приведенные на рис. 4.1 и 4.2 имеют следующие значения: N A, 0, N A - количество исходного реагента Aв реакционной смеси в начале и конце процесса; C A, 0, С A - начальная и конечная концентрации реагента Aв реакционной смеси; X A, 0 , X A - начальная и конечная степень превращения реагента A; τ - время; y - пространственная координата (координата места).


Рис. 4.2. Распределение концентрации реагента в периодическом реакторе идеального смешения: а) по времени, б) по месту (по объему).

Периодические химические процессы по своей природе всегда являются нестационарными (неустановившимися), так как в ходе химической реакции параметры процесса изменяются во времени (например, концентрация веществ, участвующих в реакции, т.е. происходит накопление продуктов реакции).

Реакторы периодического действия просты по конструкции, требуют небольшого числа вспомогательного оборудования, поэтому они особенно удобны для проведения опытных работ по изучению химической кинетики . В промышленности они обычно используются в малотоннажных производствах и для переработки относительно дорогостоящих химических продуктов. Большинство же промышленных процессов оформляется с использованием реакторов непрерывного действия.

В реакторах непрерывного действия (или проточных реакторах) питание реагентами и отвод продуктов реакции осуществляется непрерывно. Если в периодическом реакторе можно непосредственно, по часам, измерить продолжительность реакции, то в реакторе непрерывного действия этого сделать нельзя, так как при установившемся режиме в этих реакторах параметры не меняются со временем. В связи с этим для непрерывных реакторов применяют понятие условного времени пребывания реагентов в системе (времени контакта)

где V r - объем реактора; V 0 - объем реакционной смеси, поступающей в реактор в единицу времени (объемный расход реагентов).

Реактор идеального вытеснения (РИВ) представляет собой трубчатый аппарат, в котором отношение длины трубы L к ее диаметру d достаточно велико. В реактор непрерывно подаются исходные реагенты, которые превращаются в продукты реакции по мере перемещения их по длине реактора (рис. 4.3). Гидродинамический режим в РИВ характеризуется тем, что любая частица потока движется только в одном направлении по длине реактора, обратное (продольное) перемешивание отсутствует; отсутствует также перемешивание по сечению реактора.

Предполагается, что распределение вещества по этому сечению равномерное, т.е. значения параметров реакционной смеси одинаковые. Каждый элемент объема реакционной массы dV r движется по длине реактора, не смешиваясь с предыдущими и последующими элементами объема, и ведет себя как поршень в цилиндре, вытесняя все, что находится перед ним. Поэтому такой режим движения реагентов называется иногда поршневым или режимом полного вытеснения.

Состав каждого элемента объема последовательно изменяется по длине реактора вследствие протекания химической реакции. Концентрация исходного реагента А постепенно меняется по длине реактора от начального значения C А,0 до конечного С А (рис.4.3). Следствием такого режима движения реакционной смеси является то, что время пребывания каждой частицы в реакторе одно и то же. При составлении математического описания РИВ исходят из дифференциального уравнения материального баланса, преобразуя его с учетом указанных выше особенностей этого реактора.

В реальном реакторе гидродинамическая обстановка отличается от обстановки в идеальном реакторе. Например, в реальном реакторе вытеснения, помимо поршневого движения основного потока по длине реактора, возможно перемешивание потока в продольном и радиальном направлениях. Степень отклонения показателей реального реактора от идеального зависит от трех величин: коэффициента продольного перемешивания (конвективной диффузии) D L линейной скорости потока w и длины реактора L. Эти величины сведены в безразмерный комплекс D L /(wL).

Рис. 4.3 Реактор идеального вытеснения и зависимости концентрации реагента С А и степени превращения Х А от длины реактора.

Общий вид реактора и схемы некоторых из них приведены на рис. 4.4.

Ёмкостный реактор 1 оснащён мешалкой, которая перемешивает реагенты (чаще жидкости, суспензии), помещаемые внутрь аппарата. Температурный режим поддерживается с помощью теплоносителя, циркулирующего в рубашке реактора или во встроенном в него теплообменнике. После проведения реакции продукты выгружают, и после очистки реактора цикл повторяется. Процесс периодический.

Ёмкостный реактор 2 является проточным, т.к. реагенты (чаще газ, жидкость, суспензия) непрерывно проходят через него. Газ барботирует через жидкость. Колонный реактор 3 характеризуется отношением высоты к диаметру, которое для промышленных реакторов составляет 4-6 (в емкостных реакторах это отношение около 1). Взаимодействие газа и жидкости такое же, как в реакторе 2.

Рис. 4.4. Схемы химических реакторов:

Г - газ; Ж - жидкость; Т - теплоноситель; Н - насадка; ТВ - твердый реагент; К - катализатор; Хг -холодный газ; Топл. - топливо.

Насадочный реактор 4 оснащен кольцами Рашига или другими небольшими элементами - насадкой. Взаимодействуют газ и жидкость. Жидкость стекает по насадке, а газ движется между элементами насадки.

Реакторы 5-8 в основном используют для взаимодействия газа с твёрдым реагентом. В реакторе 5 твёрдый реагент неподвижен, газообразный или жидкий реагент непрерывно проходит через него. Процесс периодический по твёрдому веществу.

Ректоры 6-8 модифицированы таким образом, чтобы и по твёрдому реагенту процесс являлся непрерывным. Твёрдый реагент продвигается вдоль вращающегося наклонно установленного круглого реактора 6 или просыпается через реактор 7. В реакторе 8 газ попадается снизу под большим давлением так, что твёрдые частицы оказываются во взвешенном состоянии, образуя псевдоожиженный или кипящий слой, обладающий некоторыми свойствами жидкости.

Трубчатый реактор 9 по виду подобен кожухотрубному теплообменнику. Через трубки, в которых протекает реакция, проходят газообразные или жидкие реагенты. Обычно в трубки загружен катализатор. Температурный режим обеспечивают циркуляцией теплоносителя в межтрубном пространстве.

Реакторы 5 и 9 используют также для проведения процессов на твёрдом катализаторе.

Трубчатый реактор 10 часто применяют для осуществления высокотемпературных гомогенных реакций , в том числе в вязкой жидкости (например, пиролиз тяжёлых углеводородов). Нередко такие реакторы называют печами.

Многослойный реактор 11 оснащён системой, позволяющей охлаждать или нагревать реагент, находящийся между несколькими слоями твёрдого вещества, выполняющего роль, например, катализатора. На рисунке показано охлаждение исходного газообразного вещества холодным газом, введенным между верхними слоями катализатора, и теплоносителем через систему теплообменников, помещенных между другими слоями катализатора.

Многослойный реактор 12 предусмотрен для проведения в нём газожидкостных процессов.

Приведенные на рис 4.4 схемы отображают лишь часть применяемых в промышленности реакторов. Однако проведенная далее систематизация конструкций реакторов и протекающих процессов, позволяет разобраться и провести исследование в любом из них.

Для всех реакторов характерны общие структурные элементы, представленные в реакторе на рис. 4.5, аналогичном 11-му на рис. 4.4.

Реакционную зону 1, в которой протекает химическая реакция, представляют несколько слоёв катализатора. Она есть во всех реакторах: в реакторах 1-3 на рис. 4.4 - это слой жидкости, в реакторах 4, 5, 7 - слой насадки или твёрдого компонента, в реакторах 6, 8 - часть объёма реактора с твёрдым компонентом, в реакторах 9, 10 - внутренний объём трубок, где протекает реакция.

Рис. 4.5. Структурные элементы химического реактора:

1 - реакционная зона; 2 - входное и распределительное устройство; 3 - смеситель; 4 - теплообменник; 5 - выходное устройство; Хг - холодный газ; Т - теплоноситель; И и П - исходный и конечный продукты соответственно.

Исходная реакционная смесь подаётся через верхний штуцер. Чтобы обеспечить равномерно распределённое прохождение газа через реакционную зону, обуславливающее однородный контакт реагентов, установлен распределитель потока. Это - устройство ввода 2. В реакторе 2 на рис. 4.4 распределителем газа является барботер, в реакторе 4 - разбрызгиватель.

Между первым сверху и вторым слоями два потока смешиваются в смесителе 3. Между вторым и третьим слоями помещен теплообменник 4. Эти структурные элементы предназначены для изменения состава и температуры потока между реакционными зонами. Теплообмен с реакционной зоной (отвод теплоты, выделяющейся в результате протекания экзотермических реакций или подогрев реагирующей смеси) осуществляется через поверхность встроенных теплообменников или через внутреннюю поверхность рубашки реактора (аппарат 1 на рис. 4.4), либо через стенки труб в реакторах 9, 10. Реактор может быть оснащён устройствами разделения потоков. Продукты выводятся через выходное устройство 5.

В теплообменниках и устройствах ввода, вывода, смешения, разделения, распределения потоков протекают физические процессы. Химические реакции осуществляются в основном в реакционных зонах, которые будут дальнейшим объектом исследования. Процесс, происходящий в реакционной зоне, представляет собой совокупность частичных этапов, которые схематически показаны на рис. 4.6 для каталитического и газожидкостного взаимодействия.

Рис. 4.6. Схема потоков в каталитическом (а) и газожидкостном (б) процессах.

Рис. 4.6,а представляет схему реакционного процесса с участием катализатора, через неподвижный слой которого проходит общий (конвективный) поток газообразных реагентов (1). Реагенты диффундируют к поверхности зерен (2) и проникают в поры катализатора (3), на внутренней поверхности которых протекает реакция (4).

Образующиеся продукты реакции обратным путем отводятся в поток. Выделяющаяся в результате химического превращения теплота за счёт теплопроводности переносится по слою (5), а от слоя через стенку - к хладагенту (6). Возникающие градиенты концентраций и температуры вызывают дополнительные потоки теплоты и вещества (7) к основному конвективному движению реагентов в слое.

На рис. 4.6,б представлен процесс в слое жидкости, через который барботирует газ. Между пузырями (1) газа и жидкостью происходит массообмен реагентами (2). Динамика жидкости складывается из движения около пузырей (3) и циркуляции в масштабе слоя (4). Первое - подобно турбулентной диффузии , второе аналогично циркуляционному конвективному движению жидкости через реакционную зону. В жидкости и, в общем случае, в газе протекает химическое превращение (5).

Приведенные примеры показывают сложную структуру процессов, протекающих в реакционной зоне. Если учесть множество схем и конструкций существующих реакторов, то разнообразие процессов в них многократно возрастает. Необходим научный метод, позволяющий систематизировать это многообразие, найти общность в нём, выработать систему представлений о закономерностях явлений и связей между ними, т.е. создать теорию химических процессов и реакторов.


Использование ядерной энергии для получения электроэнергии осуществляется при помощи специальных аппаратов, которые называют ядерными реакторами . В реакторе процесс высвобождения энергии идет постепенно, поскольку в цепной реакции деления нейтроны освобождаются не одновременно. Большая часть нейтронов образуется менее чем через 0,001 секунды – это так называемые мгновенные нейтроны. Другая часть (около 0,7%) образуется через 13 секунд – это запоздалые нейтроны. Именно они дают возможность регулировать скорость прохождения цепной реакции при помощи специальных стержней, которые поглощают избыток нейтронов. Стержни вводятся в активную зону реактора и стабилизируют процесс размножение нейтронов на безопасном уровне.

Что собой представляет ядерный реактор?

Существует две основные категории реакторов – реакторы на тепловых (медленных) нейтронах и реакторы на быстрых нейтронах. В дальнейшем речь будет идти о реакторах на тепловых нейтронах

Основным элементом ядерного реактора является активная зона , в которую загружают тепловыделяющие элементы (ТВЭЛы). В этих элементах и происходит цепная реакция. ТВЭЛ реактора РБМК – это циркониевая трубка диаметром 10 мм и длинной 3,5 м. В трубке помещены таблетки двуокиси урана (UO 2). ТВЭЛы размещены в замедлителе. В реакторах РБМК Чернобыльской АЭС в качестве замедлителя используют графит. К слову, именно это существенно усугубило ситуацию в апреле 1986 года. В конструкциях других атомных реакторов в качестве замедлителя используют воду.

Тепло, которое выделяется в ТВЭЛах в результате деления урана, отводится при помощи теплоносителя (например, водой). Теплоноситель непрерывно циркулирует сквозь активную зону. Через реактор РБМК-1000 ежечасно проходить 37500 м 3 воды. Управление работой реактора осуществляется при помощи системы управления и защиты (СУЗ). СУЗ обеспечивает запуск, остановку реактора а также осуществляет регулирование его мощности. К ней относятся стержни, которые наполнены веществом сильно поглощающем нейтроны (кадмий, бор и т.д.). Введение в активную зону стержней приводит к остановке реактора, а извлекая их из реактора осуществляется регулировка мощности. Для реакторов на тепловых нейтронах характерным является наличие замедлителя в активной зоне (вода и графит).

Существует большое количество других типов реакторов, которые отличаются конструкцией, типом теплоносителя, энергией используемых нейтронов и т.д.

Принципиальная схема устройства ядерного реактора (активной зоны ) представлена на рисунке.

Тип ядерного реактора на ЧАЭС

На Чернобыльской АЭС было установлено четыре реактора РБКМ-1000. Аббревиатура РБМК – реактор большой мощности канальный. Цифра 1000 указывает мощность энергетической установки, которая способна генерировать 1000 мегаватт электроэнергии в час. Необходимо отметить, что ядерный реактор, кроме энергетической мощности имеет тепловую мощность выделения тепла в реакторе. Тепловая энергия составляет 3000 мегаватт. Используя эти два значения (значения тепловой и энергетической мощности) можно легко рассчитать коэффициент полезного действия ядерного реактора РБКМ–1000 – 31%.

Важной особенностью устройства РБМК является наличие каналов в активной зоне, по которым движется теплоноситель (вода). То есть, наличие каналов в толще замедлителя дает возможность двигаться теплоносителю, который нагреваясь превращается в пар, который в свою очередь вырабатывает электроэнергию. Такая схема генерации энергии позволила сконструировать мощные реакторы. Так, активная зона РБМК имеет вид вертикального цилиндра высотой 7 метров, а диаметр 11,8 метров. Весь внутренний объем реактора заполнен графитовыми блоками размерами 25x25x60 см 3 . Общий вес графита в реакторе составляет 1850 тонн.

Графитовые блоки имеют в центре цилиндрическое отверстие, через которое проходит канал с водой, которая является теплоносителем. Графитовые блоки, которые находятся на периферии реактора отверстий и каналов не имеют. Эти блоки играют роль отражателя. Толщина этого слоя один метр.

Графитовая кладка окружена цилиндрическим металлическим баком с водой. Он играет роль биологической защиты. Графит опирается на плиту, которая состоит из металлоконструкций, а сверху графит также накрыт подобной плитой. Верхняя плита, для защиты от излучений, накрыта дополнительным настилом.

ЧАЭС: Устройство реактора РБМК

Общее устройство реактора РБМК :

1 – опорная металлоконструкция;

2 – индивидуальные водяные трубопроводы;

3 – нижняя металлоконструкция;

4 – боковая биологическая защита;

5 – графитовая кладка;

6 – барабан-сепаратор;

7 – индивидуальные пароводяные трубопроводы;

8 – верхняя металлоконструкция;

9 – разгрузочно-загрузочная машина;

10 – верхнее центральное перекрытие;

11 – верхнее боковое перекрытие;

12 – система контроля герметичности оболочек твэлов;

13 – главный циркуляционный насос.

В реакторах типа РБМК находится 1661 канал в которых размещены кассеты с ядерным топливом. Ядерное топливо – двуокись урана, который запечен в виде таблеток. Такие таблетки имеют диаметр около одного сантиметра и высотой полтора сантиметра. Таблетки собирают в колону в количестве двухсот штук и загружают в ТВЭЛ. ТВЭЛ – пустотелый циркониевый цилиндр с примесью (1%) ниобия, длинной 3,5 метра и диаметров 13,5 мм. 36 ТВЭЛов собирают в кассету, которая вставляется в канал реактора. Общий вес урана, который при этом загружается в реактор – 190 тонн. В других 211 каналах реактора двигаются стержни-поглотители.

Литературные источники:

  • Бар"яхтар В.Г. та ін. Радіація. Що ми про неї знаємо? / В.Г.Бар"яхтар, В.І. Стрижак, В.О.Поярков. К.: Наук.думка, 1991. – 32 с.
  • Мухин К.Н. Экспериментальная ядерная физика: В 2-х т. Т.1. Физика атомного ядра. – М.: Атомиздат, 1974 – 584 с.
  • Пристер Б.С., Лощилов Н.А., Немец О.Ф., Поярков В.А. Основы сельскохозяйственной радиологии. – Киев: Урожай, 1988. - 256 с.

Реакторы служат для ограничения токов КЗ в мощных электро­установках, а также позволяют поддерживать на шинах определенный уровень напряжения при повреждениях за реакторами.

Основная область применения реакторов - электрические сети напряжением 6¾10 кв. Иногда токоограничивающие реакторы используются в установках 35 кВ и выше, а также при напряжении ниже 1000 В.

Рис. 3.43. Нормальный режим работы цепи с реактором:

а- схема цепи; б - диаграмма напряжений: в - векторная диаграмма

Схемы реактированной линии и диаграммы, характеризующие распределения напряжений в нормальном режиме работы, приведены на рис. 3.43.

На векторной диаграмме изображены: U 1 - фазное напряжение перед реактором, U р - фазное напряжение после реактора и I - ток, проходящий по цепи. Угол j соответствует сдвигу фаз между напряжением после реактора и током. Угол y между векторами U 1 и U 2 представляет собой допол­нительный сдвиг фаз, вызванный индуктивным сопротивлением реактора. Если не учитывать активное сопротивление реактора, отрезок АС пред­ставляет собой падение напряжения в индуктивном сопротивлении реактора.

Реактор (рис. 3.44) представляет собой индуктивную катушку, не имеющую сердечника из магнитного материала. Благодаря этому он обладает постоянным индуктивным сопротивлением, не зависящим от протекающего тока.

Рис. 3.44. Фаза реактора серии РБ:

1 – обмотка реактора, 2 – бетонные колонны,

3 – опорные изоляторы

Для мощных и ответственных линий может применяться индивидуальное реактирование.

В электроустановках находят широкое применение сдвоенные бетонные реакторы с алюминиевой обмоткой для внутренней и наружной установки типа РБС.

Недостатком реакторов является наличие в них потерь мощности 0,15-0,4 % от проходящей через реактор и напряжения

, (4.30)

где х р %, I н - паспортные данные реактора; I , sinj - параметры режима питающейся через реактор установки.


Рис. 3.8. Места установки реакторов: а - между секциями сборных шин электростанций; б - на отдельных отходящих линиях; в - на секции распределительного устройства подстанции (групповой реактор)


Для снижения потерь напряжения в нормальных режимах в качестве групповых реакторов применяются, как правило, сдвоенные реакторы. Сдвоенный реактор (рис. 4.9) отличается от обычного наличием вывода от середины обмотки. Обе ветви сдвоенного реактора располагаются одна над другой при одинаковом направлении витков обмотки.

Рис. 4.9. Схема сдвоенного реактора


Индуктивное сопротивление каждой ветви реактора при отсутствии тока в другой ветви



Определим индуктивное сопротивление ветви сдвоенного реактора при протекании по его ветвям одинаковых токов нагрузки.

Падение напряжения в ветви реактора составит:

Таким образом, при протекании токов в обеих ветвях

. (4.33)

Обычно k св = 0,4¸0,5.

При КЗ за одной ветвью и отключении другой ветви

. (4.34)

При подпитке КЗ со стороны второй ветви ток в последней меняет направление, изменит знак также и взаимная индукция между обмотками, а следовательно, сопротивление реактора увеличится:

Реакторы выбирают по номинальным напряжению, току и индуктивному сопротивлению.

Номинальное напряжение выбирают в соответствии с номинальным напряжением установки. При этом предполагается, что реакторы должны длительно выдерживать максимальные рабочие напряжения, которые могут иметь место в процессе эксплуатации. Допускается исполь­зование реакторов в электроустановках с номинальным напряжением, меньшим номинального напряжения реакторов.

Номинальный ток реактора (ветви сдвоенного реактора) не должен быть меньше максимального длительного тока нагрузки цепи, в которую он включен:

I ном ³ I max

Для шинных (секционных) реакторов номинальный ток подбирается в зависимости от схемы их включения.

Индуктивное сопротивление реактора определяют, исходя из условий ограничения тока КЗ до заданного уровня. В большинстве случаев уровень ограничения тока КЗ определяется по коммутационной способности выключателей, намечаемых к установке или установленных в данной точке сети.

Как правило, первоначально известно начальное значение периоди­ческого тока КЗ I п.о. , котороеспомощью реактора необходимо уменьшить до требуемого уровня.

Рассмотрим порядок определения сопротивления индивидуального реактора. Требуется ограничить ток КЗ так, чтобы можно было в данной цепи установить выключатель с номинальным током отключения I ном.отк. (действующее значение периодической составляющей тока отключения).

По значению I ном.отк определяется начальное значение периодической составляющей тока КЗ, при котором обеспечивается коммутационная способность выключателя. Для упрощения обычно принимают I п.о.треб = I ном.отк.

Результирующее сопротивление, Ом, цепи КЗ до установки реактора можно определить по выражению

Требуемое сопротивление цепи КЗ для обеспечения I п.о.треб.

Разность полученных значений сопротивлений даст требуемое сопротивление реактора

.

Сопротивление секционного реактора выбирается из условий наиболее
эффективного ограничения токов КЗ при замыкании на одной секции. Обычно оно принимается таким, что падение напряжения на реакторе при протекании по нему номинального тока достигает 0,08¾0,12 номи­нального напряжения, т. е.

.

В нормальных же условиях длительной работы ток и потери напря­жения в секционных реакторах значительно ниже.

Фактическое значение тока при КЗ за реактором определяется сле­дующим образом. Вычисляется значение результирующего сопротивления цепи КЗ с учетом реактора

,

а затем определяется начальное значение периодической составляющей тока КЗ:

Аналогично выбирается сопротивление групповых и сдвоенных реакторов. В последнем случае определяют сопротивление ветви сдвоенного реактора X р = X в.

Выбранный реактор следует проверить на электродинамическую и тер­мическую стойкость при протекании через него тока КЗ.

Электродинамическая стойкость реактора гарантируется при соблюде­нии следующего условия:

Термическая стойкость реактора гарантируется при соблюде­нии следующего условия:

Для установки в нейтрали силовых трансформаторов и присоединениях отходящих линий на напряжение 6¾35кВ рекомендуются к установке сухие токоограничивающие реакторы с полимерной изоляцией.